If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+10x-48=0
a = 5; b = 10; c = -48;
Δ = b2-4ac
Δ = 102-4·5·(-48)
Δ = 1060
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1060}=\sqrt{4*265}=\sqrt{4}*\sqrt{265}=2\sqrt{265}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{265}}{2*5}=\frac{-10-2\sqrt{265}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{265}}{2*5}=\frac{-10+2\sqrt{265}}{10} $
| a0.6=-9 | | 1^2+2y=5 | | 1/2(4x+8)=12 | | u0.8=-4 | | -0.5(x-4)=-x-5 | | (4v+3)(1+v)=0 | | 3/5*x+22=28 | | 3t-20=2t | | -4.9x^2+30x+40=0 | | 2u-18=u | | 8(a-5)=-48+8a | | 0.5m+6.4=4.9-18 | | 8n-15=25 | | (4z+2)(7-z)=0 | | 21=6-2.2x-2.7x | | 5x+15+2x=4x+9 | | 0.3v=-5 | | 93=4k+13 | | 6y+-11=61 | | 6/7+1/3x=3 | | -5j+-35=65 | | 6x-2(3+3x)=-6 | | 2x-5x-15=-7+3x-26 | | 7(y+5)=133 | | 11+7n=88 | | 5/7+1/3x=4 | | 12(5x-10)=144x | | 10(y)-y=63 | | 3v-43=47 | | 25-1/3b=1/3b+5 | | 3+4k=55 | | 2x+4=11-3x+53 |